Hamiltonian and Symplectic Symmetries: an Introduction
نویسنده
چکیده
Classical mechanical systems are modeled by a symplectic manifold (M,ω), and their symmetries are encoded in the action of a Lie group G on M by diffeomorphisms which preserve ω. These actions, which are called symplectic, have been studied in the past forty years, following the works of Atiyah, Delzant, Duistermaat, Guillemin, Heckman, Kostant, Souriau, and Sternberg in the 1970s and 1980s on symplectic actions of compact Abelian Lie groups that are, in addition, of Hamiltonian type, i.e., they also satisfy Hamilton’s equations. Since then a number of connections with combinatorics, finitedimensional integrable Hamiltonian systems, more general symplectic actions, and topology have flourished. In this paper we review classical and recent results on Hamiltonian and non-Hamiltonian symplectic group actions roughly starting from the results of these authors. This paper also serves as a quick introduction to the basics of symplectic geometry.
منابع مشابه
Non-Kähler symplectic manifolds with toric symmetries
Drawing on the classification of symplectic manifolds with cosiotropic principal orbits by Duistermaat and Pelayo, in this note we exhibit families of compact symplectic manifolds, such that (i) no two manifolds in a family are homotopically equivalent, (ii) each manifold in each family possesses Hamiltonian, and non-Hamiltonian, toric symmetries, (iii) each manifold has odd first Betti number ...
متن کاملHamiltonian-minimal Submanifolds in Kaehler Manifolds with Symmetries
By making use of the symplectic reduction and the cohomogeneity method, we give a general method for constructing Hamiltonian minimal submanifolds in Kaehler manifolds with symmetries. As applications, we construct infinitely many nontrivial complete Hamiltonian minimal submanifolds in CP n and Cn.
متن کاملExamples of Non-kähler Hamiltonian Torus Actions
An important question with a rich history is the extent to which the symplectic category is larger than the Kähler category. Many interesting examples of non-Kähler symplectic manifolds have been constructed [T] [M] [G]. However, sufficiently large symmetries can force a symplectic manifolds to be Kähler [D] [Kn]. In this paper, we solve several outstanding problems by constructing the first sy...
متن کاملA Geometric Study of the Dispersionless Boussinesq Type Equation
We discuss the dispersionless Boussinesq type equation, which is equivalent to the Benney–Lax equation, being a system of equations of hydrodynamical type. This equation was discussed in [4]. The results include: A description of local and nonlocal Hamiltonian and symplectic structures, hierarchies of symmetries, hierarchies of conservation laws, recursion operators for symmetries and generatin...
متن کاملInfinite Dimensional Hamiltonian Systems with Symmetries
We give a survey of infinite dimensional Hamiltonian systems with infinite dimensional Lie groups as symmetry groups and discuss concrete examples from soliton equations, plasma physics, fluid mechanics and quantum field theory. We present some new results of applications to BRST symmetries and g-symplectic structures.
متن کامل